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Weak Noise Approach to the Logistic Map
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Using a nonperturbative weak noise approach we investigate the interference
of noise and chaos in simple 1D maps. We replace the noise-driven 1D map
by an area-preserving 2D map modelling the Poincare sections of a conserved
dynamical system with unbounded energy manifolds. We analyze the properties
of the 2D map and draw conclusions concerning the interference of noise on
the nonlinear time evolution. We apply this technique to the standard period-
doubling sequence in the logistic map. From the 2D area-preserving analogue
we, in addition to the usual period-doubling sequence, obtain a series of period
doubled cycles which are elliptic in nature. These cycles are spinning off the
real axis at parameters values corresponding to the standard period doubling
events.

KEY WORDS: Weak noise; random maps; Hamiltonian systems; elliptic fixed
points; period doubling.

1. INTRODUCTION

Mitchell Feigenbaum has since the late seventies been a fantastic source of
inspiration for all of us working in chaos and nonlinear systems. For one of
us (MHJ) his inspiring lectures on period doubling in Copenhagen in 1980
simply defined the career path. As many young students of that time, it was
an obvious choice to enter this new and very exciting field. It has led to
many discussion, exchanges and collaborations over the years for which we
are very grateful. It is a pleasure to dedicate this paper (where we return
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to the period-doubling sequence in the logistic map!) to Mitchell on the
occasion of his 60’th birthday.

The noise-induced escape from an equilibrium state is a fundamen-
tal problem in many areas in science. The classical work goes back to
Kramers(1) who computed the transition rate from a single potential well;
see also the review in ref. 2. More recently, the understanding and descrip-
tion of nonlinear dynamical systems exhibiting e.g. period-doubling, inter-
mittency, and chaos, have led to a renewed interest in the influence of
noise on the behavior of such systems.(3–8)

In this context the generation of chaotic motion in low dimensional
time-discrete systems(9–12) offers a particularly simple case lending itself
to the analysis of the influence of noise. Thus a variety of phenomena
have been investigated such as the noise-induced shift, broadening, and
suppression of bifurcations,(13,14) the scaling properties of Lyapunov expo-
nents(15,16) and the invariant density(17,18) near the threshold for chaos, the
scaling of intermittency,(19) and escape from locally stable states;(17,20–26)

see also recent work on the application of periodic orbit theory to noisy
maps.(27–29)

For the purpose of studying the interference of stochastic noise with
the nonlinear behavior of dynamical systems, the simplest case is the influ-
ence of noise on 1D maps of the generic type

xn+1 =f (xn). (1.1)

Here n is the discrete time index and the map f (x) defines the nonlinear
discrete time evolution. In the linear case f (x)∝x the map is readily ana-
lyzed; it possesses an attractive or repulsive fixed point at x=0 depending
on the slope, and does not exhibit chaos. In the nonlinear case, where
f (x) possesses one or several differentiable maxima, the map generates the
well-known period-doubling sequence to a chaotic state beyond a critical
value of the control parameter characterizing the map.(11,12) In the sin-
gular case of for example the tent or the shift map, the period-doubling
sequence is absent and the time evolution becomes chaotic beyond a
critical control parameter value (see e.g. refs. 30–32).

Assuming that the deterministic map in Eq. (1.1) describes the
dynamical evolution of a nonlinear system in an effectively reduced phase
space, the presence of stochastic degrees of freedom originating from the
environment can typically be modelled by an additive noise term and we
are led to the stochastic map

xn+1 =f (xn)+ ξn (1.2)
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a discrete version of the usual Langevin equation for stochastic pro-
cesses.(33)

Here ξn indicates the applied noise which we for simplicity assume
has a Gaussian distribution

P(ξn)= 1√
2π�

exp

[
− ξ2

n

2�

]
(1.3)

and is correlated according to

〈ξnξm〉=�δnm, (1.4)

where � is the noise strength and 〈· · · 〉 indicates an average over the noise
ensemble.

The map f acts like a nonlinear filter on the known white noise input
fluctuations ξn and the fundamental issue becomes that of determining
the stochastic properties of the stochastic variable xn. The natural small
parameter is the noise strength � which enters in a nonperturbative man-
ner as indicated by the form of P(ξ) in Eq. (1.3). Physically, the case of
vanishing noise �= 0, yielding the dissipative map in Eq. (1.1) for ξ = 0,
is quite distinct from the case of weak noise �∼0, where on a sufficiently
long time scale (labelled by the iteration index n) the noise ξn drives the
variable xn into a stochastic state. The issue is to understand how the
stochastic noise interferes with the nonlinear behaviour.

In recent work we have elaborated on a nonperturbative canoni-
cal phase space approach based on the Freidlin–Wentzel formulation(34)

or, alternatively, a saddle point approximation to the Martin–Siggia–Rose
method in its functional form(35,36) and have applied this scheme to the
stochastic Kardar–Parisi–Zhang equation(37,38) describing the evolution of
a growing interface.(39–43)

It is characteristic of the canonical phase space formulation that
the stochastic evolution equation is replaced by coupled Hamiltonian
equations of motion, the noise being replaced by a canonical momentum
variable, and that the transition probability is obtained from the action
associated with a solution (an orbit in phase space) of the Hamilton equa-
tions. The formulation is a weak noise approximation in the same spirit
as the well-known WKB approximation in quantum mechanics and the
noise strength enters in the same way as the Planck constant in the WKB
scheme.(44,45)

In the present paper, we attempt to adapt the above singular weak
noise scheme to a stochastic map. We again find a characteristic variable
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doubling in the sense that the stochastic map in Eq. (1.2) is replaced by
the 2D map

xn+1 =f (xn)+pn, (1.5)

pn−1 =f ′(xn)pn, (1.6)

where the noise ξn in Eq. (1.2) is replaced by the new noise variable pn.
Note also that the equation for pn iterates ‘backwards’ in time. The tran-
sition probability from xn to xm in time N , P(xn→xm,N) is given by

P(xn→xm,N)=�(N)−1 exp
[
−S(xn→xm,N)

�

]
(1.7)

with dynamic partition function

�(N)=
∑
xm

exp
[
−S(xn→xm,N)

�

]
. (1.8)

The action S has the form

S= 1
2

N∑
n=1

p2
n. (1.9)

The formal scheme is thus straightforward. From the 2D map given by
Eqs. (1.5) and (1.6) we extract an orbit from xn to xm traversed in N

steps. The initial and final condition on x together with the time span N

then defines pn and P follows from Eq. (1.7) by means of the action S

evaluated in Eq. (1.9). We note that the present method has features in
common with work on periodic orbits in the dissipative standard map.(46)

2. WEAK NOISE SCHEME

2.1. Generalities

Generally, the stochastic properties of the noisy map in Eq. (1.2) can be
extracted from the generator

Z({µn})=
〈∫ ∏

n

dxne
i
∑
n µnxn

〉
, (2.1)
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where xn is driven by the map and 〈· · · 〉 indicates an average over the
implicit noise dependence. Implementing the map by means of a delta
function constraint which is subsequently exponentiated, and averaging
over the noise according to Eq. (1.3) we obtain

Z({µn}) ∝
∫ ∏

n

dξndxne
iµnxnδ(xn+1 −f (xn)− ξn)e−ξ2

n /2�

∝
∫ ∏

n

dξndxndpne
iµnxneipn(xn+1−f (xn)−ξn)e−ξ

2
n /2�. (2.2)

Finally, integrating over the noise variable ξn and making the replacement
i�pn→−pn we arrive at the form

Z({µn})∝
∫ ∏

n

dxndpne
iµnxne−S/�, (2.3)

where the action S is given by

S=
∑
n

pn

(
xn+1 −f (xn)− 1

2
pn

)
. (2.4)

In the weak noise limit �→0 the dominant part of the functional integral
in Eq. (2.3) is determined by the orbits minimizing the action S and we
obtain a principle of least action yielding the condition δS= 0 subject to
variations of xn and pn. Setting δS/δxn=pn−1 −pnf ′(xn)=0 and δS/δpn=
xn+1 −f (xn)−pn=0 we then obtain the equations of motion in the form
of the 2D map in Eqs. (1.5) and (1.6). For the optimal orbit traversed in
time N we also obtain by inserting Eq. (1.5) in Eq. (2.4) the action in
Eq. (1.9). From Z({µn}) we extract the transition probability from xn to
xm in time N given by Eq. (1.7).

In order to evaluate the transition probability from xn to xm in time
N we then have to first solve the 2D map given by Eqs. (1.5) and (1.6)
subject to the conditions xq =xn for q=1 and xq =xm for q=N , pq being
a slaved variable; second, evaluate the action S for this specific orbit, and
finally evaluate P according to Eq. (1.7). We note that the delta function
constraint implementing the map gives rise to the additional noise variable
pn. We also remark that the equation for pn iterates backwards in time.
Solving for pn we can express the 2D map in a form iterating forward in
time
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xn+1 =f (xn)+pn, (2.5)

pn+1 = 1
f ′(xn+1)

pn. (2.6)

Eliminating pn from Eqs. (2.5), (2.6), and inserting in Eq. (1.9) we can
also express S in the form

S= 1
2

N∑
n=1

[xn+1 −f (xn)]2, (2.7)

in combination with the two-step recursion formula

xn−f (xn−1)− (xn+1 −f (xn))f ′(xn)=0, (2.8)

thus making contact with the work in refs. 13, 14, and 17.

2.2. Continuum Limit – Symplectic Structure

It is instructive to perform the continuum limit xn → x(t), pn → p(t).
Setting xn+1 ≈ x+ dx/dt and pn−1 ≈p− dp/dt we obtain from Eqs. (1.5)
and (1.6) the coupled differential equation, the 2D flow

dx

dt
=−x+f (x)+p, (2.9)

dp

dt
=p−pf ′(x), (2.10)

originating from the Hamiltonian

H =p(−x+f (x))+ 1
2
p2, (2.11)

we note that compared with ordinary mechanics the Hamiltonian has a
momentum dependent potential and unbounded energy surfaces in phase
space. Correspondingly, the action in Eq. (1.9) takes the symplectic form:

S=
∫
dt

[
p
dx

dt
−H

]
. (2.12)
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We conclude that in the continuum limit the weak noise approach to the
stochastic flow or Langevin equation

dx

dt
=−x+f (x)+ ξ (2.13)

with noise correlations

〈ξ(t)ξ(t ′)〉(t)=�δ(t− t ′), (2.14)

yields a canonical structure described by the conserved 2D flow in Eqs.
(2.9) and (2.10). The phase space plot is spanned by x and p and the
orbits lie on the energy surfaces given by Eq. (2.11). The zero-energy sur-
faces are spanned by p= 0, the transient manifold, and p= 2x − 2f (x),
the stationary manifold. The transition probability from x1 to x2 in time
T is given by P ∝ exp[−S/�] and is evaluated by solving the equations of
motion (2.9) and (2.10) for an orbit from x1 to x2 traversed in time T and
computing the action S in Eq. (2.12). At long times the orbit migrates to
the zero-energy manifolds and pass by the saddle point at the intersection
of the two manifolds yielding an ergodic stationary state. Expressing the
Langevin equation in the form:

dx

dt
=−1

2
dF

dx
+ ξ, (2.15)

where the free energy is given by

F =x2 −2
∫ x

f (y)dy, (2.16)

it follows that the system can attain a stationary state with probability
distribution

Pst ∝ exp
[
−F
�

]
. (2.17)

This result also follows from S= ∫ dtpdx/dt on the zero-energy manifold
setting p= 2x− 2f (x). We shall not pursue this analysis further here but
refer to refs. 39–43 for more details. The main point is that in the con-
tinuum limit the weak noise approach applied to a noisy 1D flow yields
a symplectic structure with conserved 2D flow. On the other hand, the
2D flow does not exhibit chaotic behaviour which is the main issue under
investigation here.
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2.3. General Discussion of 2D Map

The forward iterating 2D map in Eqs. (2.5) and (2.6) is not area-preserving.
This follows from the Jacobian J=∂(xn+1, pn+1)/∂(xn,pn)=f ′(xn)/f ′(xn+1),
which only in the continuum limit approaches unity, implying area-preser-
vation as discussed in Section 2.2. Only in the vicinity of the fixed points
where the orbits slow down does the continuum limit apply and we obtain
the conservation of area. However, introducing the new noise variable
πn+1 =pn shifted by one itration and coinciding with pn in the continuum
limit we obtain the 2D map

xn+1 =f (xn)+ 1
f ′(xn)

πn, (2.18)

πn+1 = 1
f ′(xn)

πn, (2.19)

which has Jacobian J =1 and is thus area-preserving.

2.3.1. Fixed Point Structure

The fixed point structure of the 2D map follows from the equations:

x∗ =f (x∗)+ π∗

f ′(x∗)
, (2.20)

π∗ = π∗

f ′(x∗)
(2.21)

with solutions

(x∗, π∗)= (x∗
1 ,0), (2.22)

(x∗, π∗)= (x∗
2 , π

∗
2 )= (x∗

2 , x
∗
2 −f (x∗

2 ), (2.23)

where x∗
1 is a fixed point of the deterministic 1D map and x∗

2 is a solution
of f ′(x∗

2 )=1 (for simplicity we are assuming only one solution), i.e.,

x∗
1 =f (x∗

1 ), (2.24)

f ′(x∗
2 )=1. (2.25)

The 2D conserved map is thus characterized by at least two fixed points
whose stability we proceed to analyze.



Weak Noise Approach 767

Expanding about a fixed point (x∗, π∗) by setting xn = x∗ + δxn and
πn=π∗ + δπn we arrive at the tangent map(45)

(
δxn+1
δπn+1

)
=M

(
δxn
δπn

)
(2.26)

with stability matrix

M=
⎛
⎝f ′(x∗)−π∗ f ′′(x∗)

f ′(x∗)2
1

f ′(x∗)

−π∗ f ′′(x∗)
f ′(x∗)2

1
f ′(x∗)

⎞
⎠ . (2.27)

Owing to area-preservation the determinant |M|=1 and the properties of
the fixed points are determined by the trace

t=f ′(x∗)+ 1
f ′(x∗)

−π∗ f ′′(x∗)
f ′(x∗)2 (2.28)

and the eigenvalues of M are then given by

λ± = t

2
±
√(

t

2

)2

−1. (2.29)

The eigenvalues come in reciprocal pairs, λ+ =λ−1
− . For |t |< 2 the eigen-

values form complex conjugate pairs on the unit circle and the fixed point
is elliptic, for t > 2 the fixed point is hyperbolic, and for t <−2 the fixed
point is inversion hyperbolic. In the limiting case |t |=2 the eigenvalues are
degenerate, corresponding to the parabolic case.

In the case of the deterministic fixed point (x∗, π∗) = (x∗
1 ,0), x

∗
1 =

f (x∗
1 ) we have the trace, eigenvalues, and invariant manifolds

t=f ′(x∗
1 )+

1
f ′(x∗

1 )
, (2.30)

λ± =f ′(x∗
1 )

±1, (2.31)

(δx, δπ)∝ (1,0), (2.32)

(δx, δπ)∝ (1,1−f ′(x∗
1 )

2). (2.33)

Since |t | � 2 the fixed point is hyperbolic or inversion hyperbolic; the
degenerate case |t |=2 for |f ′(x∗

1 )|=1 corresponds to the parabolic case. In
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δ x δ x

δπ  δπ  

|f'(x
'
)|<1* |f'(x

'
)|>1*

(a) (b)

Fig. 1. We depict the orbits in the vicinity of the deterministic hyperbolic fixed point (x∗
1 ,0).

In (a) we show the orbits in the case |f ′(x∗
1 )|< 1, where the fixed point for the 1D map is

stable. In (b) we show the orbits for |f ′(x∗
1 )|>1; the fixed point for the 1D map is unstable.

f'(x
'
)*

t

2

hyperbolic

parabolic

parabolic

inverse
hyperbolic

-2

-1 1

Fig. 2. We plot the trace t of the stability matrix M as a function of the slope f ′(x∗
1 ) for

the deterministic fixed point (x∗
1 ,0). The shaded area corresponds to the stability region of

the 1D map.

Fig. 1 we have depicted the orbits in the vicinity of the fixed points in the
two cases |f ′|>1 and |f ′|<1. We note that the orbits along the invariant
deterministic manifold (1,0) corresponds to the 1D map. In Fig. 2 we have
shown the trace t as a function of the slope f ′(x∗

1 ) of the 1D map.
For the noisy fixed point (x∗, π∗)= (x∗

2 , π2), π2 =x∗
2 −f (x∗

2 ), f
′(x∗

2 )=
1, we obtain, setting f ′′

2 =f ′′
2 (x

∗
2 ), trace, eigenvalues, and manifolds

t = 2−π∗
2 f

′′
2 , (2.34)
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λ± = π∗
2 f

′′
2

2
±
√(

π∗
2 f

′′
2

2

)2

−π∗
2 f

′′
2 , (2.35)

(δx, δπ) ∝
⎛
⎝1,

π∗
2 f

′′
2

2
+
√(

π∗
2 f

′′
2

2

)2

+π∗
2 f

′′
2

⎞
⎠ , (2.36)

(δx, δπ) ∝
⎛
⎝1,

π∗
2 f

′′
2

2
−
√(

π∗
2 f

′′
2

2

)2

+π∗
2 f

′′
2

⎞
⎠ , (2.37)

and the character of the fixed point depends on the specific map f (x). In
Fig. 3 we have depicted the orbits in the vicinity of the noisy fixed point
in the two cases of a hyperbolic and elliptic fixed point. In Fig. 4 we have
shown the trace t as a function of π∗

2 f
′′(x∗

2 ).

δ x δ x

δπ  δπ  (a) (b)

Fig. 3. We show the orbits in the vicinity of the noisy fixed point. In (a) we depict the
elliptic case for |π∗

2 f
′′(x∗

2 )−2|<2. In (b) we show the hyperbolic case for π∗
2 f

′′(x∗
2 )>0.

t
hyperbolic

π *2 f''(x*2)

inverse
hyperbolic

elliptic

2

2
4

-2

Fig. 4. We plot the trace t of the stability matrix M as a function π∗
2 f

′′(x∗
2 ). For t >2 the

fixed point is hyperbolic, for t <−2 the fixed point in inverse hyperbolic. For |t |<2 the fixed
point in elliptic.
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2.4. Transition Probabilities in the Vicinity of the Fixed Points

Leaving aside for a moment the issue of the nonlinear breakdown of the
orbit structure near the fixed point the weak noise scheme can be applied
in order to determine the transition probabilities.

2.4.1. The Deterministic Fixed Point

In the case of the deterministic fixed point (x∗, π∗)= (x∗
1 ,0), setting a=

f ′(x∗
1 ) and inserting the initial and final values δx1 and δxN and the time

span N , the solution of the tangent map in Eq. (2.26) is

δxn= δxN(a
n−1 −a−n+1)+ δx1(a

N−n−a−N+n)
aN−1 −a−N+1

, (2.38)

δπn= (a2 −1)
δxNa

1−n− δx1a
N−n

aN−1 −a−N+1
, (2.39)

describing an orbit from δx1 to δxN in time N with δπn as a slaved
variable.

For |a|=|f ′(x1)|<1 the fixed point is stable on the transient invariant
manifold δπn=0. In the absence of noise the motion on the manifold cor-
responds to damping, i.e., the 1D map is line contracting. In the presence
of noise for δπn 
=0 the orbits escape from the fixed point and approaches
the stationary invariant manifold δπn = (1 − a2)δxn; this is the scenario
depicted in Fig. 1 a. In the continuum limit this behavior corresponds to
the flow for the noise-driven overdamped oscillator discussed in ref. 41.

For |a|> 1 the fixed point is unstable on the invariant manifold δ

πn = 0. However, we note that in this case δπn → 0. The fixed point is
attractive along the invariant noisy manifold δπn=−(a2 −1)δxn; the orbit
structure is depicted in Fig. 1b. In the vicinity of the hyperbolic fixed point
the orbit slows down and an orbit from δx1 to δxN in time N must pass
asymptotically through the fixed point for N→∞.

In order to evaluate the transition probability from δx1 to δxN in
time N we insert δπn= δpn−1 in the expression for the action in Eq. (1.9).
Performing the sum yields the action

S= 1
2
(a2 −1)(1−a−2N)

(
δxN − δx1a

N−1

aN−1 −a−N+1

)2

(2.40)
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and from Eqs. (1.7) and (1.8) the normalized transition probability

P(δx1 → δxN ,N) = �(N)−1

× exp

⎡
⎣− (a

2 −1)(1−a−2N)

2�

(
δxN − δx1a

N−1

aN−1 −a−N+1

)2
⎤
⎦ (2.41)

with dynamic partition function

�(N)= (aN−1 −a−N+1)

(
2π�

(a2 −1)(1−a−2N)

)1/2

. (2.42)

In the long time limit N→∞ the behaviour of S, P , and � depends on
a=f ′(x∗

1 ). For |a|<1 we obtain

S→ 1
2
(1−a2)

(
δxN

a

)2

(2.43)

and thus the stationary distribution

Pst ∝ exp

[
− 1

2�
(1−a2)

(
δxN

a

)2
]
. (2.44)

2.4.2. The Noisy Fixed Point

The noisy fixed point (x∗, π∗)= (x∗
2 , x

∗
2 − f (x∗

2 )), f
′(x∗

2 )= 1 is elliptic for
|π∗

2 f
′′(x∗

2 )−2|<2 and hyperbolic for |π∗
2 f

′′(x∗
2 )−2|>2. In the hyperbolic

case the discussion in the deterministic case applies, we leave the details to
the reader. In the elliptic case the complex eigenvalues are determined by
Eq. (2.35). The orbits are periodic and given by

δxn=A cos(ωn+ψ1), (2.45)

δπn=B cos(ωn+ψ2), (2.46)

where the frequency ω is given by

tan ω= 2−π∗
2 f

′′
2√

π∗
2 f

′′
2 (4−π∗

2 f
′′
2 )
. (2.47)
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In the hyperbolic case, the long time orbits near the fixed point
permits a derivation of the transition probability as in the case of the
deterministic fixed point on the π = 0 manifold. In the elliptic case, the
finite time orbits also allow an evaluation of P ; we shall, however, not
pursue this analysis here.

Summarizing, the 2D map describing the noisy 1D map within the
nonperturbative weak noise approach is characterized by at least two fixed
points. The noiseless deterministic fixed point is hyperbolic. The charac-
ter of the noisy fixed point(s) depends on the magnitude of π∗

2 f
′′(x∗

2 ). In
the vicinity of the hyperbolic fixed point the orbits slow down and we can
derive a stationary probability distribution in the linear regime. Near the
elliptic fixed point the finite time orbits only yield the short time character
of the probability distributions.

Owing to the nonlinear character of the 2D map we anticipate that
the orbit structure near the hyperbolic fixed point breaks down due to het-
eroclinic intersections and the formations of foliations. In the vicinity of
the elliptic fixed point we expect to encounter the dissolution of the KAM
tori into cantori and chaotic seas with Arnold diffusion.(30,45) Some of
these features will be investigated in more detail in the next section on the
noisy logistic map.

3. 1D NOISY MAPS

In this section, we embark on a discussion of specific noise-driven 1D
maps which in the absence of noise exhibits nonlinear behaviour such as
period doubling and transitions to chaotic behaviour.

3.1. The Linear Map

It is instructive to briefly consider the linear map

xn+1 = rxn (3.1)

with control parameter r. The Jacobian J = dxn+1/dxn = r and for r < 1
the map is length-shrinking with a stable fixed point at x∗ = 0; for r = 1
the map is length-preserving with a line of fixed points. For r >1 the map
is length-expanding, the fixed point at x
 is unstable and the orbit recedes
to infinity. In the presence of noise we obtain the noisy map

xn+1 = rxn+ ξn, (3.2)
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corresponding to the 2D area-preserving map

xn+1 = rxn+ r−1πn, (3.3)

πn+1 = r−1πn. (3.4)

This map possesses a hyperbolic fixed point at (x∗, π∗) and the discussion
in Section 2 applies.

3.2. The Logistic Map

We now turn to the well-known 1D logistic map

xn+1 = rxn(1−xn), (3.5)

which has fixed points at x∗ =0 and x∗ =1−1/r. For r >3 the fixed point
bifurcates to period-2 fixed points and in the regime 3<r<rc, rc≈3.57 the
map passes through a period-doubling scenario exhibiting universal scaling
behaviour.(11,12)

In the presence of noise we have the stochastic map

xn+1 = rxn(1−xn)+ ξn (3.6)

and the associated area preserving 2D map

xn+1 = rxn(1−xn)+ πn

r(1−2xn)
, (3.7)

πn+1 = πn

r(1−2xn)
. (3.8)

Since f (x)= rx(1 − x), f ′(x)= r(1 − 2x), and f ′′(x)=−2r and according
to the general discussion in Section 2 the 2D map has two deterministic
fixed points on the x- axis and a noisy fixed point in the lower half x−π
plane:

(x∗, π∗)= (0,0), (FP1) (3.9)

(x∗, π∗)= (1−1/r,0), (FP2) (3.10)

(x∗, π∗)= ((r−1)/2r,−(1− r)2/4r). (FP3) (3.11)

The trace and eigenvalues characterizing the stability and properties of
the fixed points are given by Eqs. (2.28) and (2.29); likewise, the invariant
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manifolds follow from (δx, δπ)∝ (1,−(f ′2 −πf ′′ −f ′λ±)). The fixed point
form a triad. The traces associated with the fixed points are given by

t1 = r+ 1
r
, (3.12)

t2 =2− r+ 1
2− r , (3.13)

t3 =2− (1− r)2
2

. (3.14)

We can now read off the character of the fixed points and establish
the correspondence with the bifurcations of the noiseless 1D map. First,
we infer that for all r > 0 (we only consider positive r) the determinis-
tic fixed points FP1 and FP2 on the x-axis are hyperbolic, whereas the
noisy fixed point is elliptic for r <rt and hyperbolic for r >rt , where rt =
1+√

8≈3.8284 corresponds to the period 3 tangent bifurcation for the 1D
map.

Let us first concentrate at the first period doubling point at r=3. The
Jacobian matrix (2.26) for the 2D map of the logistic equation is of the
form:

M=
(
r−2rx∗ + 2π∗

r(1−2x∗)2
1

r−2rx∗
2π∗

r(1−2x∗)2
1

r−2rx∗

)
. (3.15)

For the fixed point FP2 (where π∗ =0) at r=3 it then takes the form:

M=
(−1 −1

0 −1

)
. (3.16)

This corresponds to a degenerate node where the two eigendirections
coincide along the x-axis. For r <3 the eigenvalues are λ1<−1 and λ2>

−1, respectively. At r = 3 the eigenvalues collide in −1 signalling that a
period-doubling is about to take place. In Fig. 5 we show this behav-
iour just above r = 3, at r = 3.004. The black dot represents the (unsta-
ble) fixed point FP2, which seen in the 2D plane now is a hyperbolic
fixed point. The crosses determines the “usual” stable period two cycle.
Simultaneously, a period two cycle of elliptic points has been spinning off.
Initially, along the eigendirection in the x-axis but quickly moving nonlin-
early into the plane. We have numerically followed the upper elliptic two-
cycle point as far as we could for increasing r. The KAM surfaces around
it gradually dissolves and to the best of our knowledge without the cycle
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Fig. 5. The phase plane (xn,πn) for r= 3.004 just above the period-doubling into the two-
cycle. The black dot is the now (hyperbolic) unstable fixed point; the crosses are the two-
cycle on the x-axis and the KAM curves encircle the elliptic two-cycle.

Fig. 6. One of the elliptic two-cycle points for r=3.6084 in the “chaotic sea” of the energy
surface. The KAM surfaces remain only on very small scales close to the cycle point.

point undergoes further period-doubling’s. Figure 6 shows this two-cycle
point at r = 3.608, with only a few remaining KAM surfaces around it,
seen on a tiny scale. Furthermore, for increasing values of r, what happens
is a continuous spinning off of elliptic cycles in close association with the
standard period-doubling sequence on the x-axis. We show this in Fig. 7
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Fig. 7. The behaviour at r=3.462 just above the period-doubling into the four-cycle. Note,
the usual stable four-cycle on the axis and the associated elliptic four-cycle.

(for the parameter value r = 3.462) for the period-doubling to the four-
cycle occurring at r≈3.449. Note again the normal stable four-cycle, rep-
resented by crosses, on the x-axis and the associated four-cycle of elliptic
points in the plane. To substantiate this picture even further, we finally
study the behaviour just above the period-doubling into the stable eight-
cycle. At r = 3.55, this is shown in Fig. 8 with the same structure of the
stable eight-cycle on the axis with the elliptic eight-cycle in the plane. We
thus conclude, that this process will continue in the same fashion, with
elliptic 2n cycle moving away from the x-axis into the plane at each bifur-
cation point.

For r > rc the 1D map approaches a strange attractor with positive
Liapunov exponent. In the 2D map this is reflected by orbits approach-
ing the x-axis subject to infinitely many foliations in order to preserve the
area.

4. SUMMARY AND CONCLUSION

We have attacked the old problem of noise in 1D maps, in particular the
logistic equation, in a new way. Starting out with a discrete version of
the standard Langevin equation, we apply a nonperturbative weak noise
approach to map the stochastic equation onto a deterministic 2D map.
This map is area-preserving and the added dimension plays the role of the
noise field. We have derived general properties of this 2D map and applied
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Fig. 8. The phase plane at r = 3.55 above the period-doubling into the eight-cycle, where
the crosses indicate the stable eight-cycle.

it to two well know systems, the trivial linear map and the logistic map.
In both cases we find, that in addition to the standard fixed points in the
usual variable, there are additional fixed points and higher order cycles out
in the plane of finite noise amplitude. These fixed and cycle points are
either hyperbolic or elliptic. In the case of the logistic map we find that
each standard period-doubling on the x-axis is always associated with a
period-doubling out in the plane. These cycles in the plane of order 2n are
born as elliptic points moving away from the cycle points on the x-axis at
the bifurcation points.
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